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A B S T R A C T   

Plant-based strategies could provide a key gateway to restoring heavy metal-polluted environments. The present 
study was aimed to investigate the phytoremediation potential of Vigna radiata (L.) Wilczek in the heavy metal 
contaminated regions by oil industries at West Karun River, Iran. After soil sampling, the plants were grown in 
pots outdoors and irrigated by distilled water (0 mg/L Cd), Karun River water (0.04 mg/L Cd), and also by 25, 
50, 75, and 100 mg/L of cadmium chloride solutions. Plants were harvested at the seedling and ripening stages 
and their Cadmium (Cd) content was determined. According to the results, the efficiency of V. radiata for bio-
accumulation of Cd was very high at low concentrations of Cd in Karun River treatments (57% and 21% for shoot 
and roots, respectively), the highest Transfer Coefficient (TC) was (2.80 ± 0.5), Translocation Factor (TF) (2.78 
± 0.7), and Bioaccumulation Factor (BF) (3.83 ± 0.4). Although our findings shows that V. radiata does not 
possess a high potential of Cd phytoremediation at high concentrations (2.47% and 4.21% in shoot and roots at 
50–100 mg/L Cd, respectively), it can provide a safe alternative based at minimum level of Cd concentration. 
Comparison of heavy metal contents in mung bean plants and soil, shows that there is an antagonistic rela-
tionship in Cd uptake and other accessible heavy metals such as Iron (Fe), Zinc (Zn), and Copper (Cu) from the 
soil at the study area. Thus the V. radiata could be considered as a potent candidate for bioremediation and 
growing food in Cd-polluted environments.   

1. Introduction 

Heavy metal (HM) is a natural, and poisonous elements in the earth 
crust (e.g., cadmium (Cd) content is 0.1–0.41 mg/kg) which could be 
present in different forms as aerosol and also could be present in water 
and soil as sulfates, chlorides, and oxides [1]. Additionally, it is 
well-known that crude oil contains heavy metals, and oil spills elicit 
toxic effects on the environment which negatively affect human health 
[2]. Heavy metals can stay in the body for long periods [3] and cause 
serious diseases such as increased blood pressure, iron deficiency, 
digestion track allergies, cancers, fragile bones, and damage to liver, 
kidneys, and nervous system [4]. The uptake of HMs by surface soils and 
water increase health and the food-chain risks [5]. In this regard, 

different sources of heavy metals in the environment have set various 
limits (Table 1). 

Chemical and physical procedures for remediation of heavy metal 
contaminated soils are technique-dependent/site-specific and really 
expensive (up to $500/ton soil) [6]. Phytoremediation is an 
eco-friendly, efficient, and economic approach for removing environ-
mental contaminants [7]. Nevertheless, among the available in-situ and 
ex-situ remediation techniques, phytoremediation is a suitable solution 
to heavy metals problems in contaminated soil or water [8–11]. The 
plant-based remediation approach is regarded as a restoring balance 
strategy to reduce the associated risks of contaminants from aquatic 
media or land resource available for agricultural production and/or 
enhance food security [12,13]. A wide variety of plant species possess 
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detoxification mechanisms, which has been identified as decent accu-
mulators of some anthropogenic toxic metals without incurring any 
damage to their growth and development [14–17]. In general, there are 
two main ways for phytoremediation by plants to remove heavy metals 
from contaminated soils: first, plant roots absorb the contaminants from 
the soil and water to either accumulate or oxidize the pollutants in 
biomass (phytostabilization); second, plants excrete the waste product 
through their root systems into the soil to encourage the growth of 
rhizophoric organisms (phytoextraction), which would in turn aids in 
the degradation of pollutants by microbes [16,18]. Research has clearly 
shown that the achievement of successful phytoremediation depends on 
plant selection, plant growth rate, contaminants translocation, accu-
mulation potential, and tolerance to pollutants [16,19–22]. However, 
there is a lot of potential to learn about plant species capacity for phy-
toremediation [23]. Despite the fact that there is a wealth of research on 
the remediation of soil contaminants, edible plants also have great po-
tential for phytoremediation [24–26]. The mung bean, Vigna radiata (L.) 
Wilczek from the Fabaceae family can grow in arid and semi-arid regions 
of the world [27]. It has been very popular in Asian cuisine, and is rich in 
valuable sources of plant protein, nutrients, minerals, and vitamins [14, 
28]. It is adapted to a wide range of well drained soils, but is best suit-
able for fertile sandy loams. In short growing season of V. radiata, the 
average height of mature plant is 90 cm, the first flowers appear 7–8 
weeks after planting and the crop reaches maturity in 12–14 weeks [29]. 
Although, an induced changes of physiological and biochemical 
response especially on seed germination of mung bean by some heavy 
metals were reported [ [9,26,30,31]], there is a need to study the 
toxicity responses of mung beans in a real contaminated site such as oil 
industries land in Khuzestan, Iran. However, by using contaminated soil 
as medium to grow mung bean, the lower and upper limits of Cd levels in 
irrigation water were examined to simulate the some temporal-seasonal 
variation of HMs in sediment of West Karun River catchments [32–34]. 
Therefore following objectives were set in this study: 1-Acertaining the 
phytoremediation potential of V. radiata to clean up heavy metal 
contaminated soil and water. 2- Health risk assessment of the mung bean 
product cultivated in contaminated soil and/or water for humans and/or 
animals. 3- Determining the relationships between cadmium and other 
heavy metals (Fe, Zn, and Cu) absorption by mung bean. 

2. Material and methods 

This study was carried out using a complete randomization with 6 
treatments and 6 replications. Chemical materials were obtained from 
Sigma–Aldrich (St. Louis, MO) and/or Merck, Germany. Soil samples 
(0–20 cm, n = 10 per site) were collected from oil industries site (48◦

09′N, 31◦34′E), close to Azadegan oil field at West Karun Region, Iran in 
May 2019. At the same time, Karun River water samples (0–40 cm, n =
10 per site) were collected from West Karun Region (48◦ 30′N, 31◦27′E). 
The samples were placed in plastic bags and transported to the labora-
tory of Shahid Chamran University of Ahvaz. Heavy metals contents (Cd, 
Fe, Zn, and Cu) in the soil and water samples were measured by atomic 
absorption spectrophotometer (model: Analytik Jena, Germany) as 
described by Xiang et al. [35]. 

V. radiata (mung bean seeds were purchased from vegetable markets 
in Ahvaz. The vegetable seeds were steeped for 12 h in warm water, then 

transferred into the distilled water (25◦c) and allowed to germinate for 
two to three days. A total of 30 germinated V. radiata seeds were placed 
in a pot (12 cm × 12 cm, n = 36) that filled with contaminated soil in 
month of June 2019 at the Greenhouse of Botanical Garden, Department 
of Agronomy and Plant Breeding, Shahid Chamran University of Ahvaz. 
The plants were grown without pesticides, fertilizers and no addition of 
any type of manure. Irrigation treatments were undertaken by distilled 
water (0 mg/L Cd; as experimental control), Karun River water (mean: 
0.04 mg/L Cd; as environmental control), and also by four different 
concentrations of 25, 50, 75, and 100 mg/L of cadmium chloride 
solutions (CdCl2. 2H2 O). Plants were irrigated every 3 days. In view of 
watering cycle, each pot being irrigated once by Cd (II) treatment so-
lution and followed twice by distilled water. This irrigation cycle 
continued during the growth period (2 month). The average length of 
the day and night was 14/10 h, the maximum and minimum daytime 
temperatures were 45 ± 3 ◦C and 29 ± 1.5 ◦C, respectively, and the 
mean relative humidity during the daytime was 45%. At the seedling 
stage, cultivated plants were harvested. The plant shoot including leaves 
and stem were separated and the roots were also removed from the pots 
separately. At ripening stage, plant samples including previous items 
plus flower and sheaths containing seeds were taken for analysis of the 
respective treatments at 45 days after seeding/sowing (DAS). All ele-
ments were washed with distilled water then placed in an oven of 70 ◦C 
for 24 h and the plant materials were dried, grinded into fine powder. 
While the acid digestion of plant samples were done by measuring 0.5 g 
of each sample and was placed in an electric furnace for 2.5 h at 550 ◦C 
to form ashes. 5 ml of HCl (2 N) was added to each sample ant titrated 
using Whatman filter paper (Number 41). Distilled water was added into 
the solution to reach the volume of 50 ml. Final solution obtained was 
used to determine Cd, Fe, Zn, Cu concentrations using atomic absorption 
spectrophotometer (model: Analytik Jena, Germany). The calculated 
parameters are as follows (Equations (1)–(6)):[36–42] 

Microelement (mg/kg )⋅ = ⋅Element concentration (mg/L)⋅ × ⋅(V/M)

V = ⋅Extract⋅volume⋅(50⋅ml)⋅M = ⋅Dry⋅Weight⋅of ⋅plant⋅(g)
(1)  

Transfer coefficent (TC) =
Metal concentrationin shoots
Metal concentration soil

(2)  

Translocation factor (TF) =
Metal concentration in shoots
Metal concentration in roots

(3)  

Tolerance index (TI) =
Dry weight (mg) of shoots in each treatments
Dry weight (mg) of shoots in control plant

(4)  

Bioaccumulation factor (BF) =
Metal concentration plant or eachorgam

Metal concentration in soil
(5)  

Where metal concentration in the total plant was considered 

Uptakeindex(UI)=Metalconcentration(mg/kg)×TotaldryWeight(g)of shoot
(6) 

The significance of the data was analyzed using a statistical package, 
IBM SPSS version 19.0 ((SPSS Inc., Chicago, IL, USA)). Differences 
among treatment means were analyzed by Duncan’s multiple range tests 
in ANOVA (analysis of variance). Values of P < 0.01 were assumed 
significant. 

3. Results 

The results showed that TC, TF, and BF have a significant difference 
(P ≤ 0.01), compared to the control (Table 2). According to the com-
parison of mean values (Table 2; Fig. 1), TC, TF, and BF in the Karun 
River treatment were higher than the other treatments. The lowest TC, 
BF, and TF values were found in 50, 75, and 100 mg/L Cd treatments, 

Table 1 
Safe limits of Cd concentrations recommended from Europeon Union standards 
(EU), Food and Agriculture Organization (FAO) and World Health Organization 
(WHO).  

Element Plant Fruits 
vegetable 

Soil water 

Cd 0.20 μg/g, 0.02 
mg/kg 
[54, 72] 

0.05 mg/kg 
[73] 

3.00 μg/g 
[52] 

0.01 μg/g 
[74]  
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Table 2 
Effect of different concentrations of Cd on mean values of plant studied parameters.  

Parameters Control (mg/L) Treatments (Cd mg/L) 

DW Karun River water (0.04) 25 50 75 100 

TC 1.84 ± 0.2b 2.80 ± 0.5a 1.09 ± 0.2c 0.02 ± 0.0c 0.31 ± 0.1c 0.13 ± 0.0c 

TF 1.64 ± 0.3b 2.78 ± 0.7a 1.32 ± 0.7b 0.53 ± 0.2c 1.15 ± 0.7bc 0.52 ± 0.1c 

BF 2.81 ± 0.4b 3.83 ± 0.4a 0.19 ± 0.1c 0.45 ± 0.1c 0.06 ± 0.0c 0.11 ± 0.0c 

Soil Cd (mg/Kg) 7.83 ± 0.7c 9.03 ± 0.6c 139.1 ± 18.0c 1075.20 ± 20.0a 787.93 ± 25.0b 706.65 ± 32.0b 

Root Cd (mg/Kg) 7.65 ± 0.6c 8.80 ± 0.7c 11.55 ± 0.7c 32.35 ± 2.7b 24.15 ± 1.4bc 54.35 ± 12.0a 

Stem Cd (mg/Kg) 4.10 ± 0.3c 7.50 ± 0.2a 4.60 ± 0.7c 4.20 ± 0.4c 6.10 ± 0.5b 6.95 ± 0.2ab 

Leaf Cd (mg/Kg) 5.50 ± 0.2b 11.26 ± 0.7a 6.20 ± 0.7b 7.50 ± 0.3b 14.35 ± 1.8a 11.75 ± 1.7a 

Shoot Cd (mg/Kg) 14.43 ± 3.0b 24.26 ± 5.0b 15.20 ± 2.0b 17.15 ± 4.0b 25.05 ± 12.0a 23.33 ± 9.0a 

Total plant Cd (mg/Kg) 22.08 ± 4.0d 33.06 ± 7.0bcd 26.75 ± 5.0cd 42.60 ± 9.0bc 49.26 ± 9.0b 77.68 ± 10.0a 

Soil Fe (mg/Kg) 406.00 ± 32.0a 128.70 ± 17.0a 396.56 ± 27a 35.98 ± 9.0a 31.43 ± 11.0b 23.10 ± 8.0c 

Soil Zn (mg/Kg) 90.35 ± 7.2bc 128.70 ± 13.0a 107.60 ± 17.0b 97.85 ± 11.0bc 87.30 ± 17.0bc 77.40 ± 11.0c 

Soil Cu (mg/Kg) 66.30 ± 17.0c 105.00 ± 15.0a 97.00 ± 9.0a 82.85 ± 9.0b 82.20 ± 7.0b 82.00 ± 10.0b 

Leaf Cu (mg/Kg) 30.83 ± 3.0b 29.75 ± 6.0b 32.10 ± 8.0b 37.20 ± 9.0a 30.05 ± 6.0b 27.50 ± 6.0b 

Note: Data are expressed as mean ± SE of six treatments and six replications. P < 0.05. 

Fig. 1. The relationship between different concentrations of cadmium and plant studied parameters of TC, TI, TF, UI, SDW, and BF. In SDW, control, and other 
parameters, Karun River has the highest amount. Data are expressed as mean ± SE of six treatments and six replications. *P < 0.05. 
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respectively. TC, TF, and BF decreased through the addition of soil 
cadmium. TC has a positive and significant effect on TF. The results 
showed that in terms of Shoot Dry Weight (SDW), TI, and UI, there was 
no any significant difference between the treatments compared to the 
control, but, it has a positive and significant effect on TF, and UI. The 
result shows the Cd concentrations of 100 mg/L in treatment revealed 
the highest Cd levels. However, increased soil Cd had a strong potential 
to become reduced TC, TF, TI, UI, and BF (Table 2; Fig. 1). In other 
words, there is a reverse relationship between an increase in soil Cd and 
the plant absorbency levels. These phenomena are due to the existing 
mechanisms in V. radiata, for prevention of cadmium transfer to its 
shoot. Different treatments showed a significant difference (p ≤ 0.01) in 
terms of root, stem, leaf, shoot, and total plant Cd. The highest values 
were found in 100 mg/L Cd and Karun River treatment, and the lowest 
levels were observed in the control (Table 2). Also, an increase in the 
concentration of soil Cd lead to the increase of Cd in root as observed in 
this study; although a negative and non-significant correlation between 
soil/root Cd and TC, TF, and BF was observed [43]. This is caused by Cd 
absorption ratio in the roots being higher than the other organ of the 
plant. A significant difference was observed between the different 
treatments on the soils accessible Fe, Zn, and Cu. The lowest amount of 
soils accessible Fe, Zn, and Cu were observed in 100 mg/L Cd treat-
ments, whereas, the highest plant Fe absorption was observed in the 
control and the highest Zn and Cu absorption was observed in Karun 
River treatment (Table 2). Table 3 presents the results of the physico-
chemical characteristics and heavy metal concentration in the Karun 
River water and the soil. 

The results of the Pearson’s correlation test between the studied 
parameters are presented in Table 4. As shown in Table 4, there is an 
antagonistic relationship between soil Cd absorption and uptake of three 
elements of Fe, Zn, and Cu in soil, which is only significant in soil Cu 
absorption and between these elements and root. TF has increased by 
higher concentrations of soil accessible Zn and Cu, but this relationship 
with Fe and Cu in plant leaves is negative. In other words, higher con-
centrations of these elements in the soil had increased the Cd transfer 
from the root to shoot. The higher concentration of leaf Fe causes a 
decrease in BF while causing an increase in accessible soil Zn. This oc-
curs as Cu has increased BF. A higher concentration of soil Cd has a 
positive effect on root and total plant Cd but has decreased leaf Zn. Stem 
Cd also caused increases in leaf and shoot Cd. Soil Fe has shown negative 
effects on the leaf, shoot, and total plant Cd. Also, plant total Cd 
increased by higher amounts of soil Cd. Increase in stem Cd, reduced leaf 
Zn. There is a positive relationship between soil Fe and soil and leaf Cu 
levels. The highest root Cd was in 100 mg/L Cd treatments and the 
control showed the lowest. According to these results and in agreement 
with that of Rezakhani et al. [44], there is a positive relationship be-
tween soils accessible Zn and soil Cu (Table 4). Although elevated levels 
of soil Cd increases the root Cd, and the percentage of root share 
compared to total stock Cd decreased, in turn. Fig. 2 showed the 

Table 3 
Physicochemical characteristics and heavy metal concentration in the Karun 
River water and soil samples were collected from West Karun Region.  

Treatment Characteristics 

EC pH Cd Fe Zn Cu 

Karun 
river 

1.77 ±
0.30 
(ms/ 
cm2) 

7.48 

±

0.60 

0.04 

± 0.01 
(mg/ 
L) 

0.24 ±
0.02 
(mg/L) 

0.75 ±
0.04 
(mg/L) 

0.05 ±
0.01 
(mg/L) 

Soil 
(before 
culture) 

2.79 ±
0.50 
(ms/ 
cm2) 

7.92 

±

0.40 

8.80 

± 0.70 
(mg/ 
kg) 

358.00 

± 7.00 
(mg/kg) 

128.70 

± 9.00 
(mg/kg) 

105.00 

± 12.00 
(mg/kg) 

Note: Data are expressed as mean ± SE (n = 10). Ta
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percentage of Cd bioaccumulation in the shoot was more than those of 
roots in low concentrations (0.04 mg/L Cd). 

4. Discussion 

The results of the current study revealed that V. radiata plants have 
developed protective strategies to neutralize the side-effects from Cd 
toxicity or, more controversially, mechanisms that allow them to have a 
better performance under Cd exposure. Heavy metal accumulation by 
hyper-accumulator plant species exceeds 0.1–1% of the dry weight [45]. 
As such, if a plant accumulates a heavy metal e.g., over 1000 mg/kg in 
its shoot, or its TF ≥ 1, it is termed a super-absorbent plant [46]. Cad-
mium (>5–10 μg.g− 1 leaf dry weight (LDW)) is toxic commonly for 
plants [47], except Cd-hyper-accumulators which can tolerate Cd con-
centrations of 100 μg.g− 1 LDW [48]. Conversely, the results of this study 
showed that in low concentrations of Cd, the remediation efficiency of 
V. radiata is greater and the highest amounts of TC and TF were in Karun 
River treatments. By increasing Cd concentrations, TC and TF decreased, 
hence, plant TF < 1 suggests that the plant has adequate stability [49]. 
As there are no significant differences between treatments in terms of 
SDW, it can be concluded that V. radiata has shown resistance to toxic 
effects of Cd. However, the potential of heavy metals accumulation in 
shoot and root and/or plants tolerant to HMs is significant dependent on 
plant species and growth stage [ [50,51]]. These findings were 
confirmed with the results obtained by Fig. 3 because the symptoms of 

Cd toxicity were seen only in some seedlings in different treatments. In 
agreement, Mao et al. [30] reported that with the rise of heavy metal 
level, the characteristic symptoms of heavy metal stress such as black-
ening of roots and chlorosis was observed. 

The mung bean subjected to low Cd concentrations demonstrated a 
greater portion of root Cd accumulation than other treatments, indi-
cating that Cd is a chronically persistent heavy metal in the soil. 
Moreover, the highest mobility of cadmium from root to shoot was seen 
in the control and Karun River treatments. Except for the leaves sec-
ondary pathway for pollutant uptake, the root system is the uppermost 
pathway for plant absorption of heavy metals [35]. Therefore, an in-
crease in soil Cd concentration greatly reduced the accumulation of Cd 
in the shoot, probably due to a limitation in transferring potential of 
plant vesseles for this element [51]. 

The results of the current study revealed that the phytoremediation 
power of V. radiata was negligible in high Cd concentrations (Fig. 2). In 
addition, the lowest contamination levels of Cd have been observed in 
sheaths. Limit values determined for Cd in the soil in this study were 
comparable to those set by many countries. Recommended soil Cd limit 
is > 5 mg/kg [52], and in many soils worldwide is ~7 mg/kg [53]. This 
is fairly similar to our control and Karun River treatment Cd levels. 
According to the results presented in Table 2, Karun River treatment has 
shown the highest levels in many traits. Hence, we can conclude that 
V. radiata has the highest phytoremediation potency in the low levels of 
Cd treatment. Based to the results represented in Table 2, the amount of 

Fig. 2. Comparison of percentage of cadmium accumulation in the soil, roots, and shoots of V. radiata in terms of Cd stress treatments (25–100 mg/L Cd), Karun 
River as environmental control (0.04 mg/L Cd) and experimental control (0 mg/L Cd). 
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shoot Cd in 25 mg/L treatment is ~15.2 mg/kg, which is acceptable for 
animal feed. Different treatments in terms of sheath Cd compared with 
the control, have not shown significant difference, whereas the mean of 
sheath Cd in all treatments is ~4.9 mg/kg at maximum. This is a lower 
cadmium level than that appeared in phytotoxicity standards [54]. 
These results revealed that beans of V. radiata are highly resistant to Cd. 
As identifying resistant plants in contaminated soil helps us select an 
appropriate culture, the current results can be a guide to produce a 
healthier harvest. 

The findings further demonstrated that the Cd uptakes of the 
V. radiata plants had an antagonistic effect on the absorption of other 
heavy metals from the examined soil, including Fe, Zn, and Cu. The 
results of this study confirmed that Cd absorption and translocation 
influenced the absorption of Fe, Zn, and Cu. However, Cd and Zn are 
chemically similar and they can replace each other, but cadmium, unlike 
zinc, is very toxic. Probably its toxicity is due to the Cd high affinity for 
–SH functional groups in enzymes and the content of soluble protein. 
Similar to this, Xiang et al. [35] revealed that heavy metal concentra-
tions in crops were primarily affected by heavy metals in soil and that 
the interaction of heavy metals is crucial again for pollution prevention 
and control. Additionally, Mouni et al. [55] discovered that the binding 
sites at the soil are gradually filled by the solution metals, which has a 
substantial impact on how the soil’s heavy-metal specific behavior is 
altered by their interactions and/or competition for the accessible sur-
face sites. The absorption and accumulation behavior for many heavy 
metals in soil varies from species to species, even within the same 
category of vegetables, regardless of the pH, nature of the soil, organic 
matter contents, and time on adsorption [35,55,56]. In terms of 

V. radiata, the decreasing order of sorption behavior can be identified as 
Cd > Cu > Zn > Fe. 

In view of Cd phytoremediation mechanisms, plants have various 
mechanisms to tackle heavy metal stress. Some of them are 1) creation of 
a chalet between heavy metal and some organic compounds in cyto-
plasm root cells, such as amino acids, carboxylic acids, and two groups 
of peptides of phytochelatins and metallothioneins which are results in 
Cd capture at the root level [57–59]]. This mechanism has been reported 
in V. radiata [60]; 2) dislocation of poisonous metals to vacuoles [57]; 3) 
utilization of heat-shock proteins [61,62]; 4) accretion of some secre-
tions from root cells (root exudates) [63] exertion influence on some of 
the enzymes activities [64,65]. Cadmium causes increased transcription 
of genes that synthesizes glutathione. Glutathione is necessary for 
phytochelatin synthesis [64]. There are many cysteine amino acids in 
metallothioneins structure. Methallothioneins play an antioxidant role 
on the cytoplasm membrane [66]. The bonding of elements with organic 
compounds probably occurs in plasma membrane. Out-of-root secre-
tions by root cells could bond with heavy metals and induce their ab-
sorption. These secretions play an antioxidant role. Another effect of 
cadmium is induced ATPase enzyme activity in the plasma membrane 
and increase of synthesis heat-shock proteins [61,62]. These proteins 
have protection and reparation role. One of the protective proteins is 
HSP70 which increases in response to Cd stress [61,62]. These proteins 
are in the nucleus, cytoplasm, and plasma membrane. Likewise, Paxillus 
involutus plant also connects Cd to the cell wall and transfers it to vac-
uoles. These results were similar to the findings of some previous studies 
[1,10,67–71]. 

Fig. 3. Effect of Cd stress on the morphological changes of leaves, sheaths, and seeds of V. radiata (A, D, E, F, and G). No appearance changes in control plants (B, C, 
and H). Comparison of the root of control plants vs. treated plants (I). 
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5. Conclusion 

The result of the present study reveals the potential of V. radiata for 
remediation of cadmium content in contaminated soil or in water at 
West Karun Region, Iran. The Cd content in soil played antagonistic roles 
in the uptake of Fe, Zn and Cu from soil by V. radiata and that their 
specific behavior is strongly affected by their interactions with other 
metals. Additionally, there were substantial negative correlation be-
tween the Cd levels in soil and in V. radiata. This manuscript may help to 
determine the ecological farming importance of V. radiata in Cd-polluted 
soil and essential remediation strategies to keep the plant growth 
without accumulation of Cd in their edible parts. 
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